三十四、小组长(1/2)
在某位低阶科研狗带着有所学校以颜值分班的惊奇感离开自习室后,江水源继续他刷书之旅。至于景鹏副主任的话,他觉得最多只能听一半,也就是各种教材要相互比对着看,而且关键看它们术语是怎么定义的、定理是如何表述的,并琢磨每本书背后的理路,从中找出共性与特性。
——当然,这种学习方式也就江水源能用,其他人要是敢这么刷,脑袋里早就成一堆浆糊了!
至于景鹏说“《高等代数》不会太难”的那一半,就好像大人对小孩子说的“你的压岁钱我帮你收着,以后给你”,听听就行了,谁信谁傻。
接下来的一周,江水源过得非常平静,无非就是看书刷题。期间只收到了乔知之老先生的一封来信,不说别的,只看老人家那笔瘦劲工整的小楷字迹,就让江水源汗颜不已,暗自决定等有空了一定好好练字。
乔老爷子在信中表示,他回去之后想了又想,觉得小江同学能够熟练掌握《十三经》《二十四史》等大部头实在是巨大优势,跟同事们商量再三,拟定了6大方向、13个小题目,希望小江同学能够多思考、多动笔,有什么心得体会可以写下来直接寄给他看看,文字不拘长短,三两千字不嫌少,十万八万不嫌多。
6大方向江水源大致看了看,从先秦诸子治国思想、两汉国家祭祀制度,到魏晋南北朝儒佛道思想互动、唐宋社会秩序变革,再到宋明理学发展、清代学术思想演变,几乎涵盖了历史上的所有主要朝代,充分体现了经史融合的特点。关键还在于题目够大,别说给大学生练笔,就是给博士生做学位论文也足够了!
至于13个小题目,内容倒是相对具体点,至少让人看了知道大致该怎么着手。可每个题目后面罗列一二十种参考书目又是怎么回事?不管了、不管了,还是备考《高等代数》要紧!
矩阵、行列式、线性空间、多项式环、张量积,我来了!
转眼一个星期过去,江水源面色沉静地迎来了入学的第二场考查,其实心里早已慌得一批:出题的大佬一定要高抬贵手,就算考得题目深一点、知识点杂一点、计算量大一点,我都认了,千万别再玩那些虚头巴脑的技巧了,真的会死人的!
这次送题目的还是发量稀疏的仇主任和那位低阶科研狗,沈处长却没来,顶替他的是景鹏副主任。
仇万平晃着更加明亮的脑袋宣布道:“此次考查内容为《高等代数》(1)(2),共计20道题,答对12题为合格,答对17道题以上为优秀。时间为一天,即明天早上8点半之前交卷。考查形式为开卷。有什么问题么?”
《高等代数》要学大一上、下两学期,也就是所谓的“高代1、2”,一般10个学分。考查有20道题,算下来还是2道题1个学分,跟上次一样,看起来还挺公平的。不过听到时间是一天,江水源手抖了一下:我去,看来题目简单不了,没准儿又得要熬夜!
看江水源没什么异议,仇万平示意低阶科研狗发试卷纸。
江水源拿到题目,立即摒除所有杂念,以争分夺秒的姿态开始答题。第一题是求矩阵的特征值和特征向量,属于高等代数里的基本操作,他拿起笔三下五除二,不出五分钟就轻松算出了答案。算完之后他才发觉有些不对:咦,这道题目怎么可以这么简单?怎么可能这么简单?
难道我踩了雷?
吓得他赶紧回过头,从头到尾认真检查了一遍,结果没发现任何问题。于是他抬起头,一脸呆萌地看着仇万平:怎么回事?究竟是你良心发现,还是你拿错了试卷,为什么今天的试卷这么简单?老实交代,是不是有什么阴谋?
仇万平板着脸:“好好做题,不要东张西望的!”
“不是说开卷吗?”
“呃......哼!”仇万平被噎得够呛,恼怒地瞪了江水源和景鹏一眼,然后拂袖而去。
瞪我干什么?难道更年期的老人家都这么难搞?江水源耸耸肩,低下头继续做第二题。第二题是求某个齐次线性方程组的规范正交基,也属于常规操作。等花了五分钟做出来之后,他被彻底惊到了:为什么?究竟是为什么?难道是我的真诚感动了上天,让我的梦想变成了现实?
感谢天,感谢地,感谢命运让我们相遇!
不对、不对,“即使我们工作取得了极其伟大的成绩,也没有任何值得骄傲自大的理由。虚心使人进步,骄傲使人落后,我们应当永远记住这个真理”。江水源把图书管理员的箴言默念三遍,摆正心态,继续往下做题。
不到十点,江水源已经如同砍瓜切菜一般,把前面十二道题目全部解决,顺利抵达及格线。他甩甩手腕,决定一鼓作气,在午饭前结束所有战斗,用学三食堂的火腿炒饭来欢庆高代的10学分顺利到手。然后他就遇到了第13题。
设a、b是n阶实对称阵且ab+ba=0。证明:若a是半正定矩阵,则存在正交矩阵p,使得pap=diag{&labda;r,0,...,0},pbp=diag{0,...,0,&u;π)。
题目看上去有些难度,关键后面还缀了个尾巴:至少用2种以上方法证明。由此看来,出题者不是洗心革面,放下屠刀吃斋念佛了,而是思路发生了点小变化。前12题是基础题,保证只要基本功扎实就能顺利过关;后面8题则是提高题,难度迅速抬升一个数量级,似乎刻意是要对答题者的能力做出筛选分级。
既然如
第1页完,继续看下一页